The results of this investigation, taken alone, are insufficient to explain unambiguously the mechanism of the hydrolysis of bismuth(III) nitrate, the possible ways of condensation of the $\left[\mathrm{Bi}_{6}(\mathrm{OH})_{12}\right]^{6+}$ species and the existence of various bismuth basic nitrates. More structural and chemical information is needed for the solution of this problem. It is hoped that the structural analysis of the first hydrolysis product $\mathrm{BiONO}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$, which is in progress, as well as that of $2 \mathrm{BiONO}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$, will give more decisive answers concerning the hydrolysis of bismuth salts.

I wish to express my gratitude to Professor B. S. Brčić for continuous encouragement during the study of bismuth basic nitrates. I also thank Mr J. Slak for carrying out the NMR measurements. The financial support of the Research Community of Slovenia is also gratefully acknowledged.

References

Brčić, B. S., Kolar, D., Lazarinı, F. \& Malešıč, M. (1973). Monatsh. Chem. 104, 365-375.

Busing, W. R. \& Levy, H. A. (1958). Acta Cryst. 11, 798803.

Conflant, P., Boivin, J. \& Thomas, D. (1977). Rev. Chim. Minér. 14, 249-255.
Cromer, D. T. \& Liberman, D. (1970). J. Chem. Phys. 53, 1891-1898.

Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324.
Declercq, J. P., Germain, G., Main, P. \& Woolfson, M. M. (1973). Acta Cryst. A 29, 231-234.

Gattow, G. \& Kiel, G. (1968). Naturwissenschaften, 55, 389-390.
Gattow, G. \& Schott, D. (1963). Z. Anorg. Allg. Chem. 324, 31-47.
International Tables for X-ray Crystallography (1962). Vol. III, p. 281. Birmingham: Kynoch Press.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee.
KIEL, G. (1967). Untersuchungen über Wismut(III)-nitrate. Thesis, Georg-August-Univ. Göttingen.
Larson, A. C. (1967). Acta Cryst. 23, 664-665.
Levy, H. A., Danford, M. D. \& Agron, P. A. (1959). J. Chem. Phys. 31, 1458-1461.
Maroni, V. A. \& Spiro, T. G. (1968). Inorg. Chem. 7, 183188.

Ozols, J. (1950a). Latv. PSR Zinat. Akad. Vestis, 4, 87-93.
Ozols, J. (1950b). Latv. PSR Zinat. Akad. Vestis, 5, 83-89.
Ozols, J. (1950c). Latv. PSR Zinat. Akad. Vestis, 6, 49-52.
Pascal, P. (1958). Nouveau Traité de Chimie Minérale, Vol. XI, pp. 795-798. Paris: Masson.
Stewart, J. M., Kruger, G. J., Ammon, H. L., Dickinson, C. \& Hall, S. R. (1972). The XRAY system - version of June 1972. Tech. Rep. TR-192. Computer Science Center, Univ. of Maryland, College Park, Maryland.
Sundvall, B. (1974). Acta Chem. Scand. Ser. A, 28, 10361037.

Zachariasen, W. H. (1963). Acta Cryst. 16, 1139-1 144.

$\mathrm{Sc}_{3} \mathbf{C o}$, a New Structure Type Related to $\mathrm{Fe}_{3} \mathrm{C}$ and $\mathrm{Re}_{3} \mathrm{~B}$ by Periodic Unit-Cell Twinning

By Bernard Chabot and Erwin Parthé
Laboratoire de Cristallographie aux Rayons X, Université de Genève, 24 Quai Ernest Ansermet, CH-1211 Genève 4, Switzerland

(Received 23 March 1978; accepted 1 June 1978)
$\mathrm{Sc}_{3} \mathrm{Co}$, orthorhombic, Pnma, $a=13.102$ (9), $b=8.624$ (6), $c=5.829$ (3) $\AA, Z=8, D_{x}=3.91_{3} \mathrm{~g} \mathrm{~cm}^{-3}$, $\mu($ Mo $K \alpha)=107 \mathrm{~cm}^{-1}$. Least-squares refinement gave $R=0.048$ for 535 independent diffractometer data which were corrected for absorption. The structure is characterized by trigonal prisms of Sc atoms which are centred by Co atoms. Centred trigonal prisms are also found in the $\mathrm{Fe}_{3} \mathrm{C}$ and $\mathrm{Re}_{3} \mathrm{~B}$ structure types. Using the concept of periodic unit-cell twinning, the point positions of all three structure types can be derived. $\mathrm{Fe}_{3} \mathrm{C}$ is based on a hexagonal, and $\mathrm{Re}_{3} \mathrm{~B}$ on a cubic close-packed base structure, while $\mathrm{Sc}_{3} \mathrm{Co}$ derives from a closepacked base structure with mixed stackings corresponding to the atom arrangement in the Nd structure type.

Introduction

The compound $\mathrm{Sc}_{3} \mathrm{Co}$ was prepared by the arc-melting technique from elements of high purity ($\mathrm{Sc} 99.95 \%$, Co 99.99%). A single trigonal prismatic crystal (base: $0.14 \times 0.12 \times 0.12 \mathrm{~mm}$, height: 0.14 mm) was
isolated from the crushed melt. Systematic absences in precession photographs showed the space group to be either Pn2 ${ }_{1} a$ or Pnma ($0 k l$ with $k+l=2 n+1$ and $h k 0$ with $h=2 n+1$). Intensities of 588 independent reflexions out to a limit of $\sin \theta / \lambda=0.702 \AA^{-1}$ were measured with graphite-monochromated Mo K
radiation on a Philips PW 1100 automatic four-circle diffractometer in the $\theta-2 \theta$ scan mode. Cell parameters were determined from least-squares refinement of the 2θ values of 30 reflexions using the program PARAM (XRAY system, 1976). An empirical absorption correction, based on the comparison of several sets of equivalent reflexions, was applied with the program CAMEL JOCKEY (Flack, 1977). The structure was solved by direct methods in the space group Pnma. The phases of the 230 reflexions with $|E|>1.2$ were determined with SINGEN and TANGEN (XRAY system, 1976). Positional and isotropic thermal parameters refined satisfactorily with the least-squares program CRYLSQ (XRAY system, 1976). Relativistic HartreeFock scattering factors were taken from Cromer \& Mann (1968) and anomalous dispersion corrections from International Tables for X-ray Crystallography (1974). The R value ($\left.R=\sum|\Delta F| / \sum\left|F_{o}\right|\right)$ with isotropic thermal parameters was 0.048 for 535 nonequivalent reflexions with $\left|F_{o}\right|>3 \sigma\left(F_{o}\right)$. The final positional and isotropic thermal parameters are listed in Table 1 and bond lengths in Table 2.*

[^0]Table 2 shows that certain Sc -Co distances are very short. For this reason a refinement in Pn2 a was performed but neither the R value nor the contact distances changed significantly. These short distances are not unusual however: similar phenomena can be found, e.g. $\mathrm{Zr}_{3} \mathrm{Co}$ (Kripyakevich, Marvik \& Burnasova, 1970), $\mathrm{Y}_{3} \mathrm{Rh}_{2}$ (Moreau, Paccard \& Parthé, 1975), $\mathrm{Y}_{8} \mathrm{Co}_{5}$ (Moreau, Paccard \& Parthé, 1976) and $\mathrm{Y}_{3} \mathrm{Ni}_{2}$ (Le Roy, Moreau, Paccard \& Parthé, 1977).

Discussion

Information on the Sc-rich part of the Sc -Co phase diagram is limited. The existence of the following phases has been reported: ScCo with CsCl structure type (Aldred, 1962), $\mathrm{Sc}_{2} \mathrm{Co}$ with CuAl_{2} type (Aldred, 1962) and $\mathrm{Sc}_{3} \mathrm{Co}$ supposedly isostructural with $\mathrm{Zr}_{3} \mathrm{Co}$ (Markiv, Pet'kov, Gavrilenko \& Beryavina, 1974). According to Kripyakevich. Markiv \& Burnasova (1970) Zr_{3} Co crystallizes with the $\mathrm{Re}_{3} \mathrm{~B}$ type structure. To verify that $\mathrm{Sc}_{3} \mathrm{Co}$ is isostructural with $\mathrm{Re}_{3} \mathrm{~B}$ a simulated powder pattern was calculated for $\mathrm{Sc}_{3} \mathrm{Co}$ with the $L A Z Y P U L V E R I X$ program (Yvon, Jeitschko \& Parthé, 1977) assuming the $\mathrm{Re}_{3} B$ structure type. As the comparison of a powder diagram with the calculated one did not show good agreement with respect to

Table 1. Idealized and experimental positional parameters for $\mathrm{Fe}_{3} \mathrm{C}, \mathrm{Sc}_{3} \mathrm{Co}$, and $\mathrm{Re}_{3} \mathrm{~B}$
For $\mathrm{Sc}_{3} \mathrm{Co}$ the isotropic temperature factors are expressed as $T=\exp \left[-2 \pi^{2} \times 10^{-2} U(2 \sin \theta / \lambda)^{2}\right]$. E.s.d.'s are given in parentheses.

References: (a) Herbstein \& Smuts (1964). (b) This work. (c) Aronsson, Backman \& Rundqvist (1960).

Table 2. Interatomic distances in $\mathrm{Sc}_{3} \mathrm{Coup}$ to $3 \cdot 80 \AA$ The Sc atoms forming the surrounding trigonal prisms are marked with asterisks.

$\mathrm{Sc}(1)-\mathrm{Co}(2)$	2.510 (3)	$\mathrm{Sc}(2)-\mathrm{Co}(1)$	2.610 (3)
$-\mathrm{Co}(1)$	2.596 (3)	--Co(2)	2.612 (3)
$-\mathrm{Co}(1)$	3.685 (3)	$-\mathrm{Co}(2)$	3.485 (3)
$-2 \mathrm{Sc}(2)$	3.206 (2)	$-2 \mathrm{Sc}(3)$	3.249 (2)
$-2 \mathrm{Sc}(4)$	$3 \cdot 291$ (2)	$-2 \mathrm{Sc}(4)$	3.296 (3)
$-2 \mathrm{Sc}(3)$	3.299 (2)	$-2 \mathrm{Sc}(4)$	3.297 (2)
$-2 \mathrm{Sc}(4)$	3.354 (3)	$-2 \mathrm{Sc}(3)$	$3 \cdot 300$ (2)
-Sc(2)	3.496 (3)	$-\mathrm{Sc}(1)$	3.496 (3)
$-\mathrm{Sc}(2)$	3.504 (3)	$-\mathrm{Sc}(1)$	3.504 (3)
$-2 \mathrm{Sc}(3)$	3.671 (2)	$-2 \mathrm{Sc}(4)$	3.684 (3)
$\mathrm{Sc}(3)-\mathrm{Co}(2)$	2.700 (2)	$\mathrm{Sc}(4)-\mathrm{Co}(2)$	2.589 (2)
- Co (1)	2.716 (2)	$-\mathrm{Co}(1)$	2.693 (2)
$-\mathrm{Co}(2)$	3.033 (2)	$-\mathrm{Co}(1)$	2.914 (2)
$-\mathrm{Sc}(3)$	3.193 (2)	$-\mathrm{Sc}(4)$	$3 \cdot 183$ (2)
$-\mathrm{Sc}(1)$	$3 \cdot 206$ (2)	$-\mathrm{Sc}(3)$	3.238 (2)
-Sc(4)	$3 \cdot 238$ (2)	-Sc(4)	3.264 (2)
$-\mathrm{Sc}(2)$	3.249 (2)	$-\mathrm{Sc}(4)$	$3 \cdot 266$ (2)
$-2 \mathrm{Sc}(3)$	3.272 (2)	$-\mathrm{Sc}(1)$	3.291 (2)
$-\mathrm{Sc}(1)$	3.299 (3)	$-\mathrm{Sc}(2)$	3.296 (3)
$-\mathrm{Sc}(2)$	$3 \cdot 300$ (2)	$-\mathrm{Sc}(2)$	3.297 (2)
$-\mathrm{Sc}(4)$	$3 \cdot 359$ (2)	$-\mathrm{Sc}(1)$	3.354 (3)
$-\mathrm{Sc}(4)$	3.451 (2)	$-\mathrm{Sc}(3)$	3.359 (2)
$-\mathrm{Sc}(1)$	3.671 (2)	$-\mathrm{Sc}(3)$	3.451 (2)
		$-\mathrm{Sc}(2)$	3.684 (3)
$\mathrm{Co}(1)-\mathrm{Co}(2)$	3.281 (3)	$\mathrm{Co}(2)-\mathrm{Co}(1)$	3.281 (3)
$-\mathrm{Sc}(1)^{*}$	2.596 (3)	$-\mathrm{Sc}(1)^{*}$	2.510 (3)
$-\mathrm{Sc}(2)^{*}$	2.610 (3)	$-2 \mathrm{Sc}(4)^{*}$	2.589 (2)
$-2 \mathrm{Sc}(4)^{*}$	2.693 (2)	$-\mathrm{Sc}(2)^{*}$	$2 \cdot 612$ (3)
$-2 \mathrm{Sc}(3)^{*}$	2.716 (2)	$-2 \mathrm{Sc}(3)^{*}$	2.699 (2)
$-2 \mathrm{Sc}(4)$	2.914 (2)	$-2 \mathrm{Sc}(3)$	3.033 (2)
-Sc(1)	3.685 (3)	$-\mathrm{Sc}(2)$	3.485 (3)

intensities and line positions it was obvious that $\mathrm{Re}_{3} \mathrm{~B}$ and $\mathrm{Sc}_{3} \mathrm{Co}$ were not of the same type. The present study demonstrates that $\mathrm{Sc}_{3} \mathrm{Co}$ crystallizes with a new structure type.

A drawing of the $\mathrm{Sc}_{3} \mathrm{Co}$ structure is presented in Fig. 1. The structure is characterized by trigonal prisms of Sc atoms which are centred by Co atoms. From the interatomic distances (Table 2) one can conclude that the trigonal prisms are not regular but deformed.

Centred trigonal prisms are also found in two other structure types with the same composition: $\mathrm{Fe}_{3} \mathrm{C}\left(\mathrm{D} 0_{11}\right.$ type) and $\mathrm{Re}_{3} \mathrm{~B}$ (Aronsson, Backman \& Rundqvist, 1960). Since $\mathrm{Sc}_{3} \mathrm{Co}, \mathrm{Fe}_{3} \mathrm{C}$ and $\mathrm{Re}_{3} \mathrm{~B}$ are built up exclusively of trigonal prisms the trigonal-prism linkage coefficient LC (Parthé \& Moreau, 1977) must be 2. Table 3 shows the calculation of the trigonal-prism linkage coefficients for these three structure types.

Structures with centred trigonal prisms have only recently been derived from periodic unit-cell twinning of close-packed base structures (Andersson \& Hyde, 1974; Hyde, Bagshaw, Andersson \& O'Keeffe, 1974). Following the procedure and notation used by Parthe (1976), the twinning of the base structure along every third possible twin plane and occupation of the trigonalprismatic holes by the alloying partner must lead to a structure of composition $R_{3} T$. It is not unreasonable to expect that the difference between $\mathrm{Fe}_{3} \mathrm{C}, \mathrm{Sc}_{3} \mathrm{Co}$ and $\mathrm{Re}_{3} \mathrm{~B}$ is to be found in the base structure. It has already been shown by Andersson \& Hyde (1974) that $\mathrm{Fe}_{3} \mathrm{C}$

Table 3. Tables for the calculation of the linkage coefficient in $R_{3} T$ structures built up of centred trigonal prisms

$\mathrm{Fe}_{3} \mathrm{C}$		nma		$\mathrm{Sc}_{3} \mathrm{Co}$		nma: all	atoms			$\mathrm{Re}_{3} \mathrm{~B}$		cm	
	$\mathrm{Fe}(1)$ $\text { in } 4(c)$	$\begin{gathered} \mathrm{Fe}(2) \\ \text { in } 8(d) \end{gathered}$	N^{*}		$\begin{gathered} \mathrm{Sc}(1) \\ \text { in 4(c) } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{Sc}(2) \\ \text { in } 4(c) \end{gathered}$	$\begin{gathered} \mathrm{Sc}(3) \\ \text { in } 8(d) \end{gathered}$	$\begin{gathered} \mathrm{Sc}(4) \\ \text { in } 8(d) \end{gathered}$	N		$\begin{aligned} & \operatorname{Re}(1) \\ & \text { in } 4(c) \end{aligned}$	$\begin{gathered} \operatorname{Re}(2) \\ \text { in } 8(f) \\ \hline \end{gathered}$	N
$\overline{\mathrm{C} \text { in 4(c) }}$	2	4	6	$\overline{\mathrm{Co}}$ (1)	1	1	2	2	6	$\overline{B \text { in 4(c) }}$	2	4	6
				$\mathrm{Co}(2)$	1	1	2	2	6				
$p \dagger$		$4=2$		p	2	2	$\frac{4}{8} \times 4=2$	$\times 4=2$		p		$\frac{4}{8} \times 4=2$	
$\begin{aligned} & \mathrm{LC}=(4 \times 2+8 \times 2) / 12=2 \\ & R_{6} T_{\mathrm{LC}}=R_{6} T_{2} \equiv R_{3} T \end{aligned}$				$\begin{aligned} & \mathrm{LC}=(4 \times 2+4 \times 2+8 \times 2+8 \times 2) / 24=2 \\ & R_{6} T_{\mathrm{LC}}=R_{6} T_{2} \equiv R_{3} T \end{aligned}$						$\begin{aligned} & \mathrm{LC}=(4 \times 2+8 \times 2) / 12=2 \\ & R_{6} T_{\mathrm{LC}}=R_{6} T_{2} \equiv R_{3} T \end{aligned}$			

Fig. 1. Arrangement of the Co-centred trigonal Sc prisms in $\mathrm{Sc}_{3} \mathrm{Co}$. (a) Co atoms at $y=\frac{1}{4}$ and (b) Co atoms at $y=\frac{3}{4}$. The drawing represents a 10101 projection, which has however been rotated through 10° around the long a axis to give a better perspective to the trigonal prisms.

Fig. 2. The $\mathrm{Fe}_{3} \mathrm{C}, \mathrm{Sc}_{3} \mathrm{Co}$ and $\mathrm{Re}_{3} \mathrm{~B}$ structures derived by periodic unit-cell twinning from different close-packed base structures. After adding to the numerical values shown in the drawings ($\frac{2}{3}$ for $\mathrm{Fe}_{3} \mathrm{C}$ and $\frac{1}{4}$ for $\mathrm{Sc}_{3} \mathrm{Co}$) the atom arrangements correspond to the idealized positional parameters listed in Table 1. Except for the z values, the point positions of $\mathrm{Re}_{3} \mathrm{~B}$ (Table 1) cannot be read directly from the drawing. It will be necessary first to transform the given supercell - as demonstrated for the CrB type (Parthe, 1976) - to the conventional $\mathrm{Re}_{3} \mathrm{~B}$ cell for which the $a_{\mathrm{Re}{ }_{3} \mathrm{~B}}$ axis is parallel to the prism columns (inclined by 16.78° with respect to the a_{s} axis of the supercell). To obtain the point positions as given in Table 1 one has to read the supercell point positions x_{s}, y_{s}, z_{s} from the drawing and then transform them according to $x_{\mathrm{Re}_{3} \mathrm{~B}}=\frac{11}{2} x_{s}+\frac{1}{2} y_{s}-\frac{1}{8}, y_{\mathrm{Re}_{3} \mathrm{~B}}=-\frac{1}{2} x_{s}+\frac{1}{2} y_{s}-\frac{1}{8}$ and $z_{\mathrm{Re}_{3} \mathrm{~B}}=z_{s}$. The corresponding unit-cell dimensions for the three $R_{3} T$ structure types are given in the lower part of the figure. The values are normalized to a_{H} which corresponds to the closest distances between atoms in the close-packed base structures. For an untwinned segment in the drawings. a_{H} is the shortest distance between two atoms at the zero level or on the zero and one-half levels.

Table 4. List of different structure types with centred trigonal prisms which can be derived using the concept of periodic unit-cell twinning

Trivial name	Stacking notation	$R_{3} T$	$R_{5} T_{2}$	$R_{2} T$	$R_{3} T_{2}$	$R T$
Mg Sm	$\begin{aligned} & (h)_{2} \\ & (h / h c)_{3} \end{aligned}$	$\mathrm{Fe}_{3} \mathrm{C}$	$\mathrm{Mn}_{5} \mathrm{C} 2$			FeB
$\overline{\mathrm{Nd}}$	(hhhhcc) ${ }_{3}$ (hc)					TbNi(l.t.)*
-	$\left.{ }_{(h c c}\right)_{2}$	$\mathrm{Sc}_{3} \mathrm{Co}$				TbNi(h.t.)*
Cu	$(c){ }_{3}$	$\mathrm{Re}_{3} \mathrm{~B}$		($\mathrm{Ni}_{2} \mathrm{Si}$), Ge $\mathrm{C}_{2} \mathrm{Os}$	$\left(\mathrm{Dy}_{3} \mathrm{Ni}_{2}\right)$	CrB

* Low- and high-temperature modifications of TbNi .
can be derived from a hexagonal, and $\mathrm{Re}_{3} \mathrm{~B}$ from a cubic close-packed base structure. $\mathrm{Sc}_{3} \mathrm{Co}$ can also be derived from a close-packed base structure but with mixed stackings corresponding to the atom arrange-
ment in the Nd structure. Fig. 2 presents the three structure types with the twin planes perpendicular to the plane of the paper. For further clarity the untwinned segments of the base structures have been alternately
stippled or left clear. The idealized unit-cell ratios are listed in the lower part of Fig. 2. Table 1 compares idealized point positions with experimental point positions for all three structure types. Table 4 lists all the different structure types built up of centred trigonal prisms which can be derived using the concept of periodic unit-cell twinning of close-packed base structures. The different stackings of the close-packed base structures are denoted using Jagodzinski-Wyckoff symbols (Jagodzinski, 1954a,b). Twelve structure types can at present be derived using this concept; however, for those enclosed in parentheses only a very idealized version can be obtained.

This work was supported by the Swiss National Science Foundation under Project No. 2.004-0.78.

References

Aldred, A. T. (1962). Trans. Metall. Soc. AIME, 224, 1082-1083.
Andersson, S. \& Hyde, B. G. (1974). J. Solid State Chem. 9, 92-101.
Aronsson, B., Backman, M. \& RundQvist, S. (1960). Acta Chem. Scand. 14, 733-741.
Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324.

Flack, H. D. (1977). Acta Cryst. A 33, 890-898.
Herbstein, F. H. \& Smuts, J. (1964). Acta Cryst. 17, 1331-1332.
Hyde, B. G., Bagshaw, A. N., Andersson, S. \& O’Keeffe, M. (1974). Annu. Rev. Mater. Sci. 4, 43-92.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.

Jagodzinski, H. (1954a). Acta Cryst. 7, 17-25.
Jagodzinski, H. (1954b). Neues Jahrb. Mineral. 10, 49-65.
Kripyakevich, P. I., Markiv, V. Ya. \& Burnasova, V. V. (1970). Doplov. Akad. Nauk. Ukr. RSR, 32, 551-553.

Le Roy, J., Moreau, J. M., Paccard, D. \& Parthé, E. (1977). Acta Cryst. B33, 3406-3409.

Markiv, V. Ya., Pet'kov, V. V., Gavrilenko, I. S. \& Beryavina, N. N. (1974). Tezisy Dokl. Vses. Konf. Kristallokhim. Internat. Soedin. p. 53. See Chem. Abs. 86, 63785 f.
Moreau, J. M., Paccard, D. \& Parthé, E. (1975). Acta Cryst. B31, 747-749.
Moreau, J. M., Paccard, D. \& Parthé, E. (1976). Acta Cryst. B32, 496-500.
Parthé, E. (1976). Acta Cryst. B32, 2813-2818.
Parthé, E. \& Moreau, J. M. (1977). J. Less-Common Met. 53, 1-24.
XRAY system (1976). Tech. Rep. TR-446. Computer Science Center, Univ. of Maryland, College Park, Maryland.
Yvon, K., Jeitschko, W. \& Parthé, E. (1977). J. Appl. Cryst. 10, 73-74.

The Space Group and Structure of $\alpha-\mathrm{K}_{2} \mathrm{SO}_{\mathbf{4}}$

By A. J. van den Berg and F. Tuinstra
Laboratorium voor Technische Natuurkunde, Technische Hogeschool, Lorentzweg 1, Delft, The Netherlands

(Received 27 April 1978; accepted 19 June 1978)

Abstract

The structure of the high-temperature form of $\mathrm{K}_{2} \mathrm{SO}_{4}$ was solved from powder diffraction data at $630^{\circ} \mathrm{C}$. The space group appears to be $P 6_{3} / m m c$, with $a=5.90$ (2), $c=8.11$ (3) \AA and $Z=2$. The structure was refined with a simplex method from 50 powder diffraction lines. The structure is disordered: For a SO_{4}^{2-} tetrahedron two orientations are possible, in which a S-O direction is pointing either along the positive c axis or in the opposite direction. The anions are evenly distributed among these two orientations. The structure is closely related to that of the low-temperature form.

Introduction

Two modifications of $\mathrm{K}_{2} \mathrm{SO}_{4}$ are known: $\beta-\mathrm{K}_{2} \mathrm{SO}_{4}$ is stable below $587^{\circ} \mathrm{C}$ and $a-\mathrm{K}_{2} \mathrm{SO}_{4}$ above. The structures of both forms have played the roles of structure models for a series of compounds of the type $A_{2} B X_{4}$. The structure of the β form is well established (Robinson, 1958; McGinnety, 1972).
Surprisingly, a complete structure analysis of n$\mathrm{K}_{2} \mathrm{SO}_{4}$ has never been reported. Even the choice of
space group for $n-\mathrm{K}_{2} \mathrm{SO}_{4}$ is controversial. On the basis of X-ray powder data Pannetier (1966) proposed the space group $P \overline{3} m 1$. Later, Eysel \& Hahn (1970) proposed a hexagonal structure model for $1-\mathrm{K}_{2} \mathrm{SO}_{4}$ and its isomorphs; in this model the SO_{4} tetrahedra are all oriented with a $\mathrm{S}-\mathrm{O}$ radius in the same sense along the c axis; the corresponding space group is $P 6_{3} m c$. Iwai, Sakai \& Watanabe (1973) confirmed this structure using a high-temperature Weissenberg technique. Eysel (1971) showed the space group $P 3 \mathrm{ml}$ to be highly

[^0]: * Lists of structure factors have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 33714 (7 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

